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ABSTRACT  
A fatigue life prediction method is proposed which can concurrently approximate both SN behaviour as well 
as the inherent variability of fatigue efficiently via a novel combination of a Two-Point energy-based life 
prediction tool and Bayesian statistical inference. The purpose of such a tool is for the quality assessment and 
verification of components using Additive Manufacturing (AM) processes and other materials with a limited 
knowledgebase. The variability in fatigue life of AM components often stem from undesirable microstructure 
or, more commonly, internal defects onset by suboptimal process parameters. Satisfactory process parameters 
and post heat-treatments have shown to mitigate undesirable fatigue characteristics but determination of 
optimal parameters for the build process can be an extensive and costly endeavour due to either a limited 
knowledgebase or proprietary restrictions. Therefore, the proposed life prediction method enables 
determination of fatigue performance of a material with little or no prior information of the material and a 
limited number of experimental tests. Validation data sets of AM laser powder bed fusion Inconel 718 and Ti-
6Al-4V EBM as well as conventionally manufactured Aluminum 6061 are considered. This is performed by 
simulating fatigue data for LCF and HCF using a simplistic energy-based fatigue life prediction method, or 
Two Point method, to formulate prior distributions of RFL model parameters. SN life prediction curves are 
evaluated using Bayesian statistical inference and stochastic sampling techniques for distribution estimation 
and carried out in a dynamic way such that the life prediction model is continually updated with the generation 
of new experimental data. 

1.0 INTRODUCTION 

Interest in AM has grown beyond an expeditious process for prototyping and is now being viewed as a viable 
option toward small to medium scale production of end-use product fabrication as well as repair. Current 
research on AM costs, when compared to contemporary fabrication processes, have shown promise that the 
AM process may become more cost effective, while simultaneously reducing lead times of component 
fabrication, on small to medium scale production (Thomas, 2014). These advantages are primarily due to the 
fabrication of components beginning directly with the release of a design, as opposed to awaiting further 
tooling, and reducing material waste. Making direct cost comparison remains challenging due to the 
complexity associated with each AM process in addition to the field not yet having reached maturity (Atzani, 
2012).  

A number of AM technologies are ideal for retrofitting and repair of equipment and components that are no 
longer supported by vendors either as a result of outdated components or the vendor no longer existing. 
Specifically, PBF and DED have demonstrated significant utility for the repair, refurbishment, and retrofit for 
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GTE blades and other critical aerospace components (Scott-Emuakpor, 2021; Leino, 2016; Raju, 2015; 
Optomec, 2015). This provides a tremendous benefit to the sustainability of long service duration equipment 
or, in some cases, equipment that has exceeded its originally designed life cycle. With this in mind, the 
advantage of AM continues to hold the interest of many industries. The aerospace industry is no exception but 
presents unique challenged due to rigorous safety standards and regulations. 

Extensive fatigue testing is still required to fully characterize the stochastic nature of fatigue. This is 
compounded when considering AM and build-to-build variation with the manipulation or optimization of 
process parameters. For conventionally wrought material, 40 or more fatigue tests are recommended for a full 
statistical representation of fatigue performance for one operational environment and 5-11 tests at one 
simulated operating condition to understand mean and variation of fatigue performance (Schneider, 2003; 
Manchin, 1984). For example, 45 specimens would be conducted at only one temperature condition, 
environment (e.g. standard laboratory conditions or flow path in GTE), stress ratio, direction of loading. When 
considering the operational environment and stress state a GTE blade may be subjected to, the blocking of 
experiments begins to rapidly increase. 

Currently, powder bed fusion (PBF) is one of the most common AM processes for the fabrication of metallic 
components. PBF is the process of building a component by selectively fusing metallic powder layer-by-layer, 
starting from a build plate. As previously stated, a variety of PBF techniques exist encompassing: direct metal 
laser sintering (DMLS), electron beam melting (EBM), and others such as selective laser melting. It has 
become understood in the field of metal AM that process parameter selection is critical to the resultant 
mechanical and fatigue properties of the final build. With sub-optimal process parameters, AM components 
can be produced with defects such as surface roughness, unmelted or partially fused powder, and isolated or 
clustered porosity leading to highly variable mechanical and fatigue performance. Similar to most other AM 
processes, PBF has many key process parameters. The primary PBF parameters include energy density, laser 
power, hatching speed, scan strategy, layer thickness, recycled versus virgin powder, and object geometry. For 
this reason, much industrial and scientific interest has been directed towards the fabrication of objects defect-
free or near-defect free through the optimization and manipulation of process parameter (Jared, 2015; Salem, 
2016; Verma, 2019). Although with approximately 30 key process parameters or more, optimization of process 
parameters for any one build geometry can be a formidable task and typically requires rigorous analysis of 
fatigue performance; in turn, it is an exceedingly time consuming and costly task (Mani, 2015). 

Presented in this paper is a fatigue life prediction framework that combines the Two Point energy method with 
Bayesian statistical inference and parameter estimation for the purposes of rapidly approximating stress vs. 
cycle to failure and S-N fatigue life prediction. The method developed utilizes the inherent variation of fatigue 
and strain-energy dissipation via the Two Point energy-based life prediction method. Then, a Bayesian update 
is performed with the observed data concurrently in an effort to obtain a robust fatigue life prediction 
methodology. The methodology described accurately predicts HCF life with LCF data to accelerate 
experimental testing with limited resources. Specifically, the main advantage of this process obtains the 
aforementioned desires with a limited number of LCF data points, and this process is beneficial to AM 
materials that may exhibit significantly different fatigue properties than conventionally wrought material or 
with different process parameters. The benefit of this methodology is demonstrated by first discussing a large 
data set of conventional Al6061-T6 extruded rod. Then, the life prediction framework is performed for AM 
for Inconel 718 specimens followed by EBM Ti 6Al-4V to demonstrate this methods ability to evaluate the 
potential of a material before the need for significant time and monetary investment to characterize the 
material. 
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2.0 BACKGROUND AND THEORY 

2.1 Energy-Based Fatigue Life Prediction 
The fundamental concept of energy-based fatigue life prediction is the assumption that, for a given material, 
there exists a critical and constant amount of energy that will cause fatigue fracture. These approaches include 
the monitoring of acoustic emissions, entropy degradation, and strain-energy. For strain-energy based 
approaches, prediction is determined by introducing the hypothesis that under cyclic loading, failure will occur 
when the total cumulative dissipated strain energy density (SED) via plastic work or damage reaches the 
critical energy. Ideally, if this critical energy to failure is known and the strain energy dissipation rate can be 
measured or approximated, the fatigue life of a component can then be determined (Feltner, 1961; Stowell, 
1969; Scott-Emuakpor, 2004; and Scott-Emuakpor 2010). 

The use of strain energy, and specifically SED as a critical damage parameter was proposed as early as the 
1920’s, relating SED dissipated per cycle to the number of cycles to failure (Jasper, 1923; Enomoto, 1955). 
To define SED, a representative hysteresis loop is presented in Figure 1. For fatigue, this hysteresis loop is 
assumed to start at a state of zero stress and undergo a tensile loading to a maximum value of stress. Then the 
loading is reversed to minimum value of stress and finally unloaded back to zero stress. For purely elastic 
deformation, this hysteresis loop will be a straight line. However, if we assume plastic deformation or damage 
occurs, then the area within the hysteresis loop will be finite. This finite area is then defined as 𝑊𝑊𝑑𝑑 or the SED 
dissipated per cycle. If the critical amount of energy and 𝑊𝑊𝑑𝑑 for a given operating condition are both defined, 
then fatigue failure can be predicted. 

SED is often viewed as a favorable damage parameter for several reasons. First, strain energy is a scalar 
quantity and intrinsically represents damage done to the material system subjected to a single axis or multi-
axis loading. As well for some materials, the critical energy to cause fatigue failure Wf has been shown to be 
equivalent to the total SED dissipated for tensile fracture Wm. This is highly advantageous as 𝑊𝑊𝑚𝑚 can be found 
quickly from a monotonic tensile test and fatigue prediction can be quickly evaluated with a cyclic plasticity 
model. Despite the systematic variation of 𝑊𝑊𝑓𝑓 in the VLCF regime, strain-energy fatigue life prediction 
methods have still demonstrated the ability to predict fatigue life of both LCF and HCF SN behavior for 
Aluminum 6061, Titanium 6Al-4V, and IN 718 (Scott-Emuakpor, 2007; Scott-Emuakpor, 2010; Ozaltun, 
2009; Holycross, 2015; Celli, 2017; Celli, 2020). The work in this document attempts to circumvent the 
extensive task of fully characterizing the underlying phenomenon which causes the variation of 𝑊𝑊𝑓𝑓 with 
respect to in the LCF region utilizing both stochastic sampling techniques and Bayesian statistical inference 
combined with the Two-Point energy-based life assessment method.  

The ``Two-Point" energy-based life assessment method, proposed by Shen and Akanda (2015), is utilized in 
this study as a method to determine multiple fatigue life predictions as well as approximating inherent SN 
variation. As previously stated, energy-based methods, including the Two-Point method, rely on the 
assumption that fatigue failure occurs once a critical amount of strain energy has been exhausted. To model 
𝑊𝑊𝑑𝑑, the Ramberg-Osgood plasticity model is presented with the cyclic strength coefficient and strain 
hardening exponent 𝐾𝐾′ and 𝑛𝑛′. The Two-Point method assumes that the dissipated cyclic SED (𝑊𝑊𝑑𝑑) is a 
constant value for a given stress amplitude (σa) and the total SED dissipated (Wf) is a constant value for all 
σa. Therefore, the method requires that the experimental cycles and SED to failure 𝑁𝑁𝑓𝑓 and 𝑊𝑊𝑓𝑓 at defined stress 
amplitudes σa are known. If it is assumed that 𝑊𝑊𝑓𝑓 is constant for all σa, then fatigue life can be quickly 
predicted by determining an expression for 𝑊𝑊𝑑𝑑.   

The Two-Point method has shown to provide accurate fatigue life prediction for stress ranges bounded within 
the two stress amplitudes considered and assuming the SN behavior bounded by the two points is 
approximately linear in log-log space. Proposed by Shen and Akanda (2015 and 2016), the derivation begins 
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similar to common definitions of energy-based fatigue life predictions. First the total strain range is separated 
into elastic and plastic components, 

Δϵ = Δϵ𝑒𝑒 + Δϵ𝑝𝑝 (1) 

where Δϵ represents the total strain range and set equivalent to summation of the elastic and plastic strain range 
components Δϵ𝑒𝑒 and Δϵ𝑝𝑝 respectively. The elastic component of strain is described by Young's modulus 𝐸𝐸 in 
Eqn (2). 

Δϵe =
Δσ
E

(2) 

For the plastic relationship, numerous models have been proposed in an attempt to fully describe the 
phenomenon of plastic deformation and the many influencing parameters of plasticity including strain rate and 
temperature dependencies. However, the Ramberg-Osgood cyclic parameters are presented here for the 
simplicity of the two-parameter power-law model as well as the ability in doing so to generate simulated data 
points. The relationship is shown in Eqn (3) where K′ represents the cyclic strength coefficient and n′ is the 
strain hardening exponent. 

Δϵ𝑝𝑝 =
Δσ
𝐾𝐾′

1
𝑛𝑛′

(3) 

Substituting Eqn (2) and (3) into Eqn (1) yields Eqn (4), the Ramberg-Osgood (RO) model. This can be seen 
schematically in Figure 1. Note that the origin in Figure 1 has been shifted to the minimum ϵ and σ point for 
mathematical convenience. 

Δϵ =
Δσ
𝐸𝐸

+ �
Δσ
𝐾𝐾′�

1
𝑛𝑛′

(4) 

With Eqn (4) defined, the cyclic SED can now be calculated as the area within the hysteresis as a component 
undergoes fatigue. First, the material is assumed to be isotropic or the elastic-plastic tensile loading behavior 
is equivalent to the compressive load behavior. Note, Eqn (4) can be written in the instantaneous form to relate 
stress and strain. 

Wd = ΔσΔϵ − 2� ϵ
Δσ

0
 dσ (5) 

Second, it is assumed in this work that the stress ratio of 𝑅𝑅 = −1 or the minimum stress amplitude σmin is 
equal to −σmax. This equates Δσ to 2σ𝑎𝑎 where σ𝑎𝑎 is the stress amplitude. Eqn (4) is substituted into Eqn (5) 
and yields Eqn (6). 

Wd = (2σa) �
2σa
K′ �

1
n′
�

1 − n′

1 + n′�
(6) 

Eqn (6) denotes the cyclic damaging parameter as a function of stress amplitude σ𝑎𝑎 and our cyclic plasticity 
model parameters K′ and n′.  
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Figure 1: Fatigue Hysteresis Loop 

As previously discussed from experimental finding, often 𝑊𝑊𝑑𝑑 can be approximated as constant with good 
success. From previous work, this is done by finding the total strain-energy density dissipated to cause fatigue 
failure 𝑊𝑊𝑓𝑓 and divided by the total cycles to failure 𝑁𝑁𝑓𝑓 as shown in Eqn (7). 

𝑊𝑊𝑑𝑑 =
𝑊𝑊𝑓𝑓

𝑁𝑁𝑓𝑓
(7) 

Substituting Eqn (7) into Eqn (6) and rearranging yields, 

Nf =
Wf

(2σa) �2σa
K′ �

1
n′ �1 − n′

1 + n′�

(8)
 

Eqn (8) enables energy-based fatigue life prediction to occur by measuring 𝑊𝑊𝑓𝑓 and determining the cyclic RO 
parameters K′ and n′. Like similar energy-based approaches, this can be performed experimentally and by 
generating data sets within the desired range of fatigue life prediction. More specifically, with Nf,i, Wf,i, and 
σa,i, where 𝑖𝑖 represents the test in which the data set was collected, two equations may be written from Eqn 
(8), and n′ and K′ can be solved shown in Eqn (9) and (10). 

𝑛𝑛′ =
ln �

σ𝑎𝑎,1
σ𝑎𝑎,2

�

ln �
𝑊𝑊𝑓𝑓,1
𝑊𝑊𝑓𝑓,2

𝑁𝑁𝑓𝑓,2
𝑁𝑁𝑓𝑓,1

σ𝑎𝑎,2
σ𝑎𝑎,1

�
, σ𝑎𝑎,1 ≠ σ𝑎𝑎,2 (9) 

𝐾𝐾′ = �
𝑁𝑁𝑓𝑓,𝑖𝑖

𝑊𝑊𝑓𝑓,𝑖𝑖
�2σ𝑎𝑎,𝑖𝑖�

�1+ 1
𝑛𝑛′�

1 − 𝑛𝑛′

1 + 𝑛𝑛′
�
𝑛𝑛′

,  𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 2 (10) 

The intent of this framework is to provide a method of accelerated fatigue characterization while assuming a 
limited knowledge base of the material. For that reason, the Two-Point method is then utilized to generate life 
prediction curves using only two experimental test data sets and in a way such that the plasticity parameters 
K′ and n′ need not be assumed or found by other test methods. It is important to note here that �1 + 1

n′
� 
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represents the slope of a linear SN life prediction curve in log-log space and, therefore, using the Two-Point 
method the data must be collected at different stress amplitudes due to the mathematical derivation. 
Additionally, Wf,i, K′, n′ and represents the intercept of the SN life prediction curve. However, 𝑊𝑊𝑓𝑓 here is 
used as the selection of either data set 𝑖𝑖 = 1 or 𝑖𝑖 = 2 to be evaluated such that life prediction curve will 
intercept the SN data point of 𝑖𝑖 = 1 or 𝑖𝑖 = 2. With K′ and n′ fully defined, the final life prediction curve of 
the Two-Point method is defined in Eqn (11). 

Nf =
Wf,i

2σa �
2σa
Ki
′ �

1
n′ 1 − n′

1 + n′

(11)
 

In most situations, it is unlikely for an analysis to only be comprised of two experimental data points for fatigue 
life prediction. For this reason, this framework takes advantage of evaluating n′, both solutions of K′, and 
additional combinations of just two experimental data points to generate an approximate, or simulated, 
distribution of fatigue life curves to be later used for fatigue life prediction. It is important to note that 
∀Nf, Ki

′, ni′, ∋ R+ must be rigorously enforced in Eqn (11), where all Nf, K′, 𝑛𝑛′ must be real and positive. If 
the previous condition is not satisfied, calculated K′ and 𝑛𝑛′ values will lead to erroneous fatigue life predictions 
(Celli, 2020). 

Although the Two-Point method is both simple and easy to implement, the method cannot accurately capture 
the entire SN behavior of a material by utilizing fatigue data from only two experimental fatigue tests. This is, 
in part, first due to the model being insufficient to describe the discontinuity, often referred to as the "knee 
point", occurring in both the LCF and HCF regime in log-log space of the SN curve. Second, considerable 
previous work has been performed utilizing Wf, as a constant successfully but has shown systematic variation 
of Wf for monotonic tensile fracture and VLCF, LCF, and HCF. The method presented in this document 
utilizes the variation of Wf as a representation of underlying causes of fatigue behavior variation. With the 
implementation of stochastic approaches and Bayesian statistical inference for fatigue life prediction, the 
provided method can validate expected fatigue properties of a material before investing significant time and 
monetary investment to characterize the material. 

2.2 Random Fatigue Limit Model 
The RFL model, proposed by Pascual (1999), is utilized in this study and can be seen in Eqn 12. 

log10�𝑁𝑁𝑓𝑓,𝑖𝑖� = β0 + β1 log10�σ𝑎𝑎,𝑖𝑖 − γ𝑖𝑖� + ϵ𝑖𝑖,  σ𝑎𝑎,𝑖𝑖 > γ𝑖𝑖 (12) 

Where β0 and β1 are the model parameters and γ𝑖𝑖 represents the endurance limit of the material. Fatigue limit, 
or often referred to as endurance limit, is assumed as a specified σ𝑎𝑎 which a material can withstand an infinite 
number of cycles. Although a useful description, fatigue limits remain primarily an engineering approximation 
as most metals, with a given heat treatment, have a finite life. For this reason, the fatigue limit is viewed more 
as a statistical value where the probability of failure, at a given load condition, is less than a defined failure 
probability criterion at a defined cycle to failure criterion (e.g. 106) with the use of ``runouts" (Dieter, 1986). 
In this study, no ``runouts", or termination of fatigue test prior to failure, were collected as well as no prior 
fatigue limit information. This is because the intent of this work is to demonstrate the life prediction process 
strictly using data generated from the considered data pool. For these reasons, γ𝑖𝑖 is assumed zero and Eqn (12) 
is reduced to Eqn (13). 

log10�𝑁𝑁𝑓𝑓,𝑖𝑖� = β0 + β1 log10�σ𝑎𝑎,𝑖𝑖� (13) 
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2.3 Bayesian Statistical Inference 

2.3.1 Bayes’ Rule 

In general form, Bayes' theorem is as follows in Eqn (14) where 𝒚𝒚 = (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛)is a vector of 𝑛𝑛 observations 
and 𝛉𝛉 = (θ1, … , θk) is a vector containing 𝑘𝑘 model parameters (Box, 1973). 

𝑝𝑝( 𝛉𝛉 ∣∣ 𝒚𝒚 ) =
𝑝𝑝(𝒚𝒚 ∣∣ 𝜽𝜽 )𝑝𝑝(𝜽𝜽)

𝑝𝑝(𝒚𝒚)
(14) 

In Eqn (14), the probability of the model parameters 𝛉𝛉 given the data set 𝒚𝒚 or p(𝛉𝛉 ∣∣ 𝒚𝒚 ), is called the posterior 
distribution or ``posterior" and the desired outcome of the analysis. p(𝛉𝛉) is known as the prior distribution or 
the ``prior" and is a representation of what is known a priori of the model parameters. The prior is often seen 
as an educated guess or represented as the initial knowledge, or lack of knowledge, of the model parameters. 
p( 𝐲𝐲 ∣∣ 𝛉𝛉 ) is representative of the probability of the observations 𝒚𝒚 given the model parameters. However, often 
is the case that the the observations 𝒚𝒚 are given and the parameters 𝛉𝛉 are desired. Therefore, 𝑝𝑝( 𝐲𝐲 ∣∣ 𝛉𝛉 ) is 
regarded as a function of 𝛉𝛉, rather than a function of 𝒚𝒚, and written as the likelihood of 𝛉𝛉 given 𝒚𝒚 or l( 𝛉𝛉 ∣∣ 𝐲𝐲 ). 

𝑝𝑝(𝛉𝛉 ∣∣ 𝒚𝒚 ) ∝ 𝑙𝑙( 𝛉𝛉 ∣∣ 𝒚𝒚 )𝑝𝑝(𝛉𝛉) (15) 

In the Bayesian approach to model calibration, there is generally an assumed prior knowledge or some prior 
understanding of the distribution of model parameters described with a probability distribution, mean μ(θ) 
and variance σ2(θ) as P�μ(θ), σ2(θ)� or as p(θ). With this in mind, Bayesian analysis is utilized in this work 
as it has the ability to incorporate prior knowledge or ignorance of the data as well as ``all" or additional 
information (Box, 1973). Following the work performed in Celli (2019), collections of two-point energy life 
predictions curves from available data are used to act as prior knowledge of an estimated RFL model given 
the SN data observed. Thus, the prior can be described as an expected distribution or an educated guess of the 
parameter estimate distribution in a more systematic process.  

Bayesian statistics is a powerful tool but the definition of priors remains challenging. There is a wide breadth 
of work as well as current research being done in this area. One often used approach that draws significant 
criticism outside of statistics is the use of large data sets, or the data sets themselves, to tune or define 
informative priors. However, this becomes a circular argument as this approach would require a large data set 
to analyze the phenomenon of interest when only a small data set is available. Although an effective method 
for curve fitting, for practical applications in situations where the data is unavailable this is not a useful process 
and more classical approaches are perceived to be more effective. To address this issue for fatigue analysis, a 
novel approach of defining priors in this work and is applied by measuring traditional SN data σ𝑎𝑎 and 𝑁𝑁𝑓𝑓 as 
well as collecting the additional of information 𝑊𝑊𝑓𝑓. Using the Two Point method previously described, a 
collection of fatigue life predictions are determined and used to simulate a population of SN experimental data. 
This simulated SN population is then used as the source of informative priors. The advantage of defining priors 
in this way enables the use of Bayesian statistics to approximate prior information sourced specifically from 
Two-Point method simulated data and combined with the current observed data set without the need of 
externally sourced information. It should be noted that this framework allows for, but does not require, the 
inclusion of external information, allowing for fatigue analysis in a wider breadth of situations. 

A prior PDF, or simply referred to as a ``prior", is the description of a random event with unconditional 
probability. That is to say, priors are representation of a belief before collected evidence or observed data is 
considered. However, poorly defined priors can have significant negative consequences towards data analysis 
and becomes a large topic of debate within the field of statistics. Bayesian Inference is therefore introduced as 
a method in which to characterize the inherent variance of fatigue data as well as providing a method to include 
prior estimated knowledge obtained from the collective Two-Point energy life predictions. 
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2.3.2 Model Parameter Estimation 

Then with Eqn (13), fatigue life prediction process begins with a procedure similar to the work done by 
Babuška et al. and Douardo et al. by assuming (Babuška, 2016; Dourado, 2019) by introducing, 

𝑙𝑙𝑙𝑙𝑔𝑔10�𝑁𝑁𝑓𝑓,𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜� = 𝑙𝑙𝑙𝑙𝑔𝑔10�𝑁𝑁𝑓𝑓,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� + ϵ𝑖𝑖 (16) 

Note that log10�Nf,i
model� is represented by Eqn (16) and ϵi is the observation error. ϵ is assumed i.i.d and 

constant variance ϵ ∼ N(μ = 0, λ = Cte). Given the sample data Nf = �Nf,1, … , Nf,m�, the likelihood function 
is then written as 

𝑙𝑙� σ𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜, θ, λ ∣∣ 𝑁𝑁𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 � = �
1

(2πλ)
1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

ϵ𝑖𝑖2

2λ�
𝑚𝑚

𝑖𝑖=1

(17) 

Finally, identifying that we are only interested in the proportionality of the posterior we ignore the denominator 
and rewrite Eqn (15) as, 

 

p� σaobs, θ, λ  ∣∣  Nf
obs �  ∝  l� σaobs, θ, λ  ∣∣  Nf

obs � p(θ)p(λ) (18)  

Note that the model parameters are assumed to have a normal distribution and the variance is assumed to have 
an inverse gamma prior distribution p(λ). 

2.3.3 Bayesian Update 

With each unique life prediction from Eqn (11) is calculated over a specified range σa
predic. This range is 

defined in order to encompass the range from LCF to the highest desired cycle count to be analyze. 

• Compute 𝑛𝑛′, 𝐾𝐾𝑖𝑖′ for each 𝜎𝜎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 pair using Eqn 9 and 10. 
 

• Define a discrete interval of 𝜎𝜎𝑎𝑎
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝜎𝜎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚, … , 𝜎𝜎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚� where the stress amplitude considered 

falls within the range of �𝜎𝜎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 > 𝜎𝜎𝑎𝑎,𝑖𝑖 > 𝜎𝜎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚�. Note, 𝜎𝜎𝑎𝑎
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is initially approximated by the 

user to produce SN data over the desired cyclic failure range of interest. Therefore, the bound of 
𝜎𝜎𝑎𝑎
𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 may be approximated using the initial predictions from Eqn (11) or inspection of SN 

behavior of like materials. In this study, 𝜎𝜎𝑎𝑎
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝜎𝜎𝑎𝑎�𝑁𝑁𝑓𝑓 = 101�, … , 𝜎𝜎𝑎𝑎�𝑁𝑁𝑓𝑓 = 107�� and is 

defined with a length equivalent to the number of SN data points considered for determining 𝐾𝐾′ and 
𝑛𝑛′ 
 

• Compute 𝑁𝑁𝑓𝑓,𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 from the Two-Point method as a function of 𝑓𝑓�𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 , W𝑓𝑓,𝑖𝑖� for the pair of 
experimental tests 𝑖𝑖. 
 

• Apply least squares regression (LSR) to estimate model parameter prior distribution 
o β0 ∼ N�μ�β0

2pt�, σ2�β0
2pt�� 

o β1 ∼ N�μ�β1
2pt�, σ2�β1

2pt�� 
o ϵ ∼ N(0, σ2) where σ2 ∼ IG(α2pt, β2pt) and α and β are the shape and scale parameters of 

the inverse gamma distribution respectively. 
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• Define the prior distribution as the probability of the model parameters p0(β0), p1(β1), and p2(σ2). 

 
• Compute the maximum distributions, such as Monte Carlo Markov Chains. In this study, Gibbs 

Sampler is used to generate posterior samples, with 10000 samples generated with a burn-in period 
of 5000 samples, and determine posterior MLE.posterior estimates from Eqn (18). Note, a variety 
of algorithms are used for sampling from probability  
 

• Update, after the first Bayesian update p0, p1, p2 as a weighted sum from the Two-Point method 
defined as pi = wpiTwo−Point + (w − 1)pi

prev.post.. The weighted value 𝑤𝑤 is defined by the user 
and represents the level of credibility associated with each prior. In this work, w is assigned as 0.5 
for consistency and using the previous step's empirical mean and standard deviation from the 
posterior distribution of RFL model parameters. 

Note that the superscript ``2pt" simply denotes the model parameters determined only from Nf
predic at σaobs. 

3.0 EXPERIMENTAL PROCEDURE 

All axial fatigue tests were conducted on an MTS servo-hydraulic load frames. An MTS FlexTest 60 was used 
for both test control and data acquisition of time, load, and strain signals. Strain measurements were collected 
via an MTS axial extensometer. For EBM Ti 6Al-4V, strain data was collected using digital image correlation 
(DIC). 

The MTS 661.20E-03 load cells and linear variable differential transducers (LVDT) were previously certified, 
performed annually, and calibrated following ASTM standards and MTS guidance prior to testing. 
Extensometers, were properly calibrated following vendor guidance and strain measurements were verified 
not to exceed 0.5% error with an MTS Extensometer Calibrator 650.03 and following ASTM E83.To ensure 
proper alignment prior to testing, an alignment procedure was conducted with an MTS 609 alignment fixture, 
installed on all servo-hydraulic load frames, and used in conjunction with MTS Easy Alignment hardware and 
software. This was done to ensure an ASTM E1012 Class 5 throughout testing.  

 

Figure 2: AL6061-T6 Round Dogbone Specimen. 
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Figure 3 DMLS IN718 and EBM Ti 6Al-4V Round Dogbone Specimen. 

For DIC experiments, a full field of view was required for optical strain information, and available 
extensometer attachments obstructed key measurement locations along the gage length of the specimen. For 
this reason, extensometery was not used except during tensile testing to validate DIC post-processing 
parameters and strain measurements. The practice of monitoring fatigue damage and validating DIC 
measurements of cyclic SED as a substitute to extensometery has been previously performed in an earlier study 
conducted by Celli (2019). 

DIC was performed with a stereo camera rig, or two cameras attached to the same bar or fixture, assumed 
rigid. The cameras were both GS3-U3-123S6M-C FLIR Grasshopper3 HRDC with 12.3 MP resolution and 
Schneider XNP 1.9/35-0901 lenses set with a f# of 8.  The cameras had a stereo angle of 22.5∘ and a working 
distance of 67.5mm. The magnification of the cameras resulted in averaged 60.9 pixels per mm. High intensity 
flood lights were used to illuminate the specimen and allow for a reduction in exposure time. The exposure 
time across all tests were on the order of 5ms; however, the exposure time was adjusted for each fatigue test 
to ensure the most desirable contrast was obtained.  

The image acquisition was controlled through Correlated Solutions Vic-Snap 8 software. Fatigue test 
frequency and image acquisition was varied to ensure a proper measurement of hysteresis energy could be 
made. With a camera frame rate of 5 Hz, the frequency of the fatigue test during image acquisition was set to 
0.07 Hz for two cycles. This was done to collect approximately 72 images per cycle and to adequately resolve 
the hysteresis loop for an energy measurement. The test frequency was then changed to a higher test frequency. 
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4.0 RESULTS 

4.1 Aluminum 6061-T6 
The overall accumulated AL6061-T6 data can be seen in Figure 4. Al6061-T6 Data collected by Celli (2020), 
and Holycross (2016) are represented by filled in markers denoting SED data was also collected with SN data 
and SED data. HCF and VHCF data collected by Scott-Emuakpor (2016) and Yahr (1993) is also presented in 
Figure 4 indicated by hollow triangular markers. The SN data that includes companion SED data is used in 
conjunction with the methodology described in this paper for HCF life prediction with LCF data and the SN 
data without companion SED data is used as a validation data set. 

 

Figure 4: AL6061-T6 (Left) SN Curve and (Right) Cyclic SED Data. 

The comparisons of the fatigue life prediction with respect the LSR considering all the data, the reduced data 
set, and Two-Point MCM method is presented in Figure (5) with 5, 15, and 29 experimental tests considered, 
respectively. The solid black circular markers represent the reduced data set considered, the solid grey circular 
markers represent the censored or remaining SN data with corresponding SED data not considered, and the 
hollow black circular markers represent the rest of the data found either experimentally or from literature. This 
comparison demonstrates graphically the utility of accurately predicting LCF fatigue life as well as forecasting 
HCF behavior by deploying the developed hybrid Two-Point BSI life prediction algorithm. Furthermore, 
comparative analysis of the Two-Point BSI framework to that of the LSR of the reduced data set in Fig. (5) 
shows that the hybrid Two-Point BSI is a better approximation for the RFL model parameters. These figures 
again demonstrate graphically the Two-Point BSI method converges towards the LSR considering all the data 
quickly with only 5, or 10, SN points and with 29 SN points or more the figure is nearly identical. As a 
quantitative metric, the analysis of the root mean squared error (RMSE), in Table 1, of the forecasted prediction 
again shows significantly better performance of the Two-Point BSI method when compared to the LSR of the 
reduced data. 

As a comparison considering experimental effort, the total test duration for the reduced data set considering 5, 
10, 15, 20, 25, and 29 experimental tests would take 0.5, 0.8, 1.5, and 3.8 hours of experimental testing time 
at a test frequency of 20Hz. If one considers the length of time to generate the presented data at 107 cycles to 
failure or less at the same test frequency it would take 643 hours or 26.8 days of continual testing. If one then 
considers all the data, the total testing time would be 23815 hours or approximately 2.8 years.  Although the 
latter is an extreme example and would likely require different experimental techniques, including ultrasonic 
fatigue testing, this exemplifies how utilizing the Two-Point Test method can reduce experimental testing time 
by 99.4 to 99.8% for 107 cycles to failure or less. 
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Figure 5: AL6061-T6 SN Life Prediction with 5 (Top-Left), 10 (Top-Right), and 29 (Bottom) Experiments. 

 

Table 1: AL6061-T6 Forecast RMSE. 

Exp. Tests              Reduced Data            Two-Point BSI 
5 0.914 0.587 

10 0.798 0.514 
15 0.957 0.512 
20 0.965 0.512 
25 0.970 0.521 
29 0.812 0.520 

All Data: 0.510 
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4.2 DMLS Inconel 718 
DMLS IN718 fatigue tests were performed to demonstrate the utility of the Two-Point BSI life prediction 
framework. With particular emphasis, the life prediction of IN718 is intended to show the application of the 
proposed method to forecast fatigue behavior of AM materials. IN718 is of high interest to the aerospace 
community and has become a common selection for both material powder to print as well as additional forms 
for other additive processes to manufacture aerospace components such as turbine blades. The fatigue data is 
presented graphically in Fig. 6. 

 

Figure 6: DMLS IN718 (Left) SN Curve and (Right) Cyclic SED Data. 

The experimentally found SN curve of IN718 presents a clear linear trend in SN with slight variation between 
the stress amplitudes of 700 and 900 MPa. From Figure 6, the SED data does not directly correspond to the 
same variation trend in the SN data. Although cyclic SED was collected, data exceeding 106 cycles to failure 
is censored in the framework to provide an example case in which the method could be used to forecast HCF 
SN data with LCF data. 

Despite the variation seen with the introduction of experimental tests, the model parameters begin to converge 
but likely need additional experimental tests to ensure convergence. Analysis of the RMSE, seen in Table 2, 
of the forecasted prediction again shows significantly better performance of the Two-Point BSI method when 
compared to the LSR of the reduced data. The resulting life prediction curves can be seen in Figure 7. 

Table 2: DMLS IN718 Forecast RMSE. 

Exp. Tests              Reduced Data            Two-Point BSI 
4 0.504 0.330 
5 0.746 0.295 
6 0.589 0.378 
7 0.497 0.246 
8 0.585 0.220 
9 0.576 0.258 

All Data: 0.202 
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Figure 7: DMLS IN718 SN Life Prediction with 5 (Top-Left), 7 (Top-Right), and 9 (Bottom) Experiments. 
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4.2 EBM Ti 6Al-4V 
The Two-Point BSI framework is applied to EBM Ti 6Al-4V as the second AM material considered to 
demonstrate the utility of the approach. The SN data and cyclic SED data can be seen in Figure 8. Figure 8 
shows the SN data following an approximately linear trend. Only one SN data point does not have 
corresponding SED data. From Figure 8, each specific data set appears to follow its own linear trend. However, 
it was found experimentally, for some cases, a crack had initiated almost immediately at the onset of the fatigue 
test. It is suspected that sub-optimal process parameters during the EBM caused large volumetric defects 
throughout the material in some cases but not consistently throughout the population of specimens. An 
example of this can be seen in Figure (9) and (10). The presence of such features increase the magnitudes of 
strain concentrated at the local defects. In turn, the use of extensometers, whether physical or virtual, would 
no longer provide an accurate representation of strain or damage as the normal strain field is no longer uniform 
throughout the gauge section. For this reason, the cyclic SED data reported in Figure (8) is censored and was 
not incorporated into the Two-Point fatigue life prediction framework due to the violated assumption of a 
uniform strain field to measure cyclic SED. 

 

Figure 8: EBM Ti 6Al-4V (Left) SN Curve and (Right) Cyclic SED Data. 

Figure (9) reveals a large void due to lack of fusion with partially fused powder as the point of crack initiation 
as well as a significant number of other lack of fusion locations detected along the surface. Post mortem 
inspection via DIC measurements revealed higher localized strain at the location of crack initiation almost 
immediately after the onset of the test. In contradiction, virtual extensometer measurements, encompassing the 
gauge section, revealed an approximately consistent strain amplitude but smaller plastic strain response. 
Therefore, it is hypothesized that the assumption of the SED measurement, uniform damage throughout the 
volume of the material, is invalid and thus censored from analysis.  

In contrast to the large void specimens, Figure (10) shows small locations of lack of fusion on the fracture 
surface. Virtual extensometer as well as a point measurement, placed at the location of fatigue rupture, each 
gathered data that calculated cyclic SED, of 0.185 MJ

m3 and 0.183 MJ
m3, respectively, approximately 1.5% 

difference. Therefore, the Two-Point fatigue life prediction can be applied to the data points associated with 
these specimens. 
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Figure 9: LCF EBM Ti 6Al-4V. 

 

Figure 10: HCF EBM Ti 6Al-4V. 

Table 3 presents the RMSE of the forecasted data and the life predictions for EBM Ti 6Al-4V are presented 
in Figure (11). Although one point is considered in this case, the Two-Point BSI method interestingly 
outperforms the LSR of the reduced data set even as it converges towards the all-data fit. However, from 
observation of the life predictions the slope of the Two-Point BSI is steeper than that of the reduced data set 
when considering 5 and 6 experimental tests. For this reason, with the inclusion of additional HCF data, it 
would then be suspected that the LSR considering all the data would outperform the Two-Point BSI method. 
It can be seen that the Two-Point BSI method initially is a closer representation of the All data LSR when 
compared to the Reduced data set. However, with the introduction of additional points the LSR of the reduced 
data set converges more closely to that of the LSR of all the data. This remains unsurprising as additional SED 
information is not being provided to the Two-Point BSI method as the data is censored.  Of note, using DIC 
in conjunction with the Two-Point BSI method demonstrates the capability to identify underlying phenomena 
separating specimens within the sample population. 
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Figure 11: EBM Ti 6Al-4V SN Life Prediction with 3 (Top-Left), 5 (Top-Right), and 6 (Bottom) Experiments. 

Table 3: EBM Ti 6Al-4V Forecast RMSE. 

Exp. Tests              Reduced Data            Two-Point BSI 
3 0.921 0.692 
4 0.703 0.695 
5 0.724 0.694 
6 0.719 0.694 

All Data: 0.412 
 

5.0 CONCLUSION AND FUTURE WORK 

The proposed framework first utilizes a simplistic Two-Point life prediction to generate multiple life prediction 
curves that were then used to approximate the variation of fatigue life against repeated stress fatigue tests 
successfully. Then, the method was combined with stochastic sampling techniques of Monte Carlo simulation 
as well as Bayesian Statistical Inference to evaluate common SN curve models used within the literature, 
specifically the random fatigue limit model.  The proposed method has demonstrated the ability to approximate 
and forecast SN fatigue life while reducing the total experimental testing time by 99.4 to 99.8%. The life 
prediction framework presented in this document provides a highly efficient tool for the investigation of 
prediction of fatigue life and variability of fatigue life concurrently and rapidly for investigation of candidate 
AM materials and associated process parameter. 
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